Круг сходимости - Definition. Was ist Круг сходимости
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Круг сходимости - definition

Радиус сходимости; Интервал сходимости степенного ряда; Интервал сходимости

Круг сходимости         

степенного Ряда

a0+a1(z-z0)+a2(z-z0)2+... (*)

круг |z-z0| < R в плоскости комплексного переменного z, обладающий тем свойством, что внутри него ряд (*) сходится, а вне соответствующего замкнутого круга - расходится (в точках окружности |z-z0| = R ряд может как сходиться, так и расходиться). Каждый степенной ряд или сходится на всей плоскости (при любых z), или имеет К. с. конечного радиуса R, или сходится только при z = z0. Внутри К. с. ряд (*) сходится к некоторой аналитической функции (См. Аналитические функции). Число R называется радиусом сходимости ряда (*) и определяется по формуле Коши - Адамара:

Если z0 = x0 - действительное число, то часть действительной оси Ox, лежащая внутри К. с., называется интервалом сходимости (См. Интервал сходимости).

Интервал сходимости         

степенного ряда, интервал действительных значений переменного, обладающий тем свойством, что в каждой точке этого интервала Степенной ряд сходится, а в каждой точке, не принадлежащей к этому интервалу и не являющейся его концом, - расходится.

Радиус сходимости         

радиус круга сходимости степенного ряда (см. Круг сходимости), т. е. такое число r, что степенной ряд сходится при |z| < r и расходится при |z|> г.

Wikipedia

Круг сходимости

Круг сходимости степенного ряда n = 0 a n ( z z 0 ) n {\displaystyle \sum _{n=0}^{\infty }a_{n}(z-z_{0})^{n}} — это круг вида

D = { z : | z z 0 | < R } {\displaystyle D=\{z:|z-z_{0}|<R\}} , z C {\displaystyle z\in \mathbb {C} } ,

в котором ряд абсолютно сходится, а вне его, при | z z 0 | > R {\displaystyle |z-z_{0}|>R} , расходится. Иными словами, круг сходимости степенного ряда есть внутренность множества точек сходимости ряда. Круг сходимости может вырождаться в пустое множество, когда R = 0 {\displaystyle R=0} , и может совпадать со всей плоскостью переменного z {\displaystyle z} , когда R = {\displaystyle R=\infty } .